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Extension to the Unequal  Atom Case with Application to Neutron Diffraction 
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Recent methods in the probabilistic theory of the structure invariants and seminvariants are here 
generalized to include the case that not all atoms in the unit cell are identical. The presence of unequal 
atoms, in particular a few heavy atoms, is thus clearly seen to enhance the power of the direct method. 
Since the method permits the presence of negative scatterers, the application to neutron diffraction is 
immediate. Only the conditional probability distributions associated with the first neighborhood of the 
three-phase structure invariant and the first two neighborhoods of the four-phase structure invariant 
in P 1 and P]" are treated here. However the methods are clearly sufficiently general to cope with struc- 
ture invariants and seminvariants in general. 

I. Introduction 

In recent months a new method in the probabilistic 
theory of the structure invariants was introduced 
(Hauptman, 1975a, b). For a fixed crystal structure it 
is assumed that one or more reciprocal vectors h, k , . . . ,  
are the primitive random variables uniformly distri- 
buted over well defined subsets of reciprocal space. 
Then a structure invariant or seminvariant, as a func- 
tion of the primitive random variables h , k , . . . ,  is 
itself a random variable and its conditional probability 
distribution, given the values of a suitable set of 
structure factor magnitudes, can then be found. In 
this way a probabilistic estimate for the structure 
invariant or seminvariant in terms of an appropriately 
chosen set of structure factor magnitudes may be 
derived. Finally, the concept of 'neighborhood of a 
structure invariant or seminvariant' has been introduced 
and its central importance stressed. However the meth- 
od was limited by the requirement that the crystal 
structure consist of N identical atoms in the unit cell. 
It appears now that the restriction to identical atoms 
was not essential. In the present paper the methods 
recently obtained are generalized to include the case 
that not all atoms are identical. In fact the formalism 
is of sufficient generality to include also the case that 
some of the atomic scattering factors are negative, so 
that the extension to neutron diffraction is automatic. 

In the space group P1 the normalized structure 
factor is defined by 

1 
~ t f j  exp (2nih. rj) (1.1) Eh= IEhl exp (iq~h) = ~ J= 

in which f j  and r~ are the zero-angle atomic scattering 
factor and position vector respectively of the atom 
labeled j, N is the number of atoms in the unit cell 
and 

N 
O'n•--- ~ f ~ .  (1.2) 

d=l  

In the recent work (Hauptman, 1975a, b) the mathema- 
tical formalism required to find the various conditional 
probability distributions of the structure invariants 
and seminvariants has been described in some detail. 
In order to save space here it is assumed that the 
reader is thoroughly familiar with these recent papers, 
and the present paper is heavily dependent on them. 
The mathematical Appendixes I and II contain only 
the few necessary guideposts which the interested 
reader will find helpful in his attempt to understand 
or recreate the analysis appropriate to the unequal 
atom case. In addition, equations (1.5) and (I1.5) of 
these Appendixes, the joint probability distributions of 
three and seven structure factors respectively, are of 
major importance in themselves, and will surely play 
a central role in further developments. For the reader 
interested in studying all details of the derivations, 
these are given for P1 in the long Appendix III.* 

2. The conditional probability distribution of the 
structure invariant q~=cPh + g k +  ¢P~, given the three 

magnitudes IEhl,iEkl,lE, I 

Suppose that a crystal structure in P 1 is fixed. Specify 
also the three non-negative numbers R1,R2,R 3. The 
threefold Cartesian product Wx Wx W of reciprocal 
space W with itself is defined to be the collection of 
all ordered triples (h,k,l) of reciprocal vectors h,k,l. 
Suppose finally that the primitive random variable 
(h,k,l) is uniformly distributed over the subset of 
W x W x W defined by 

IEhl=Rx, IEkI=R2, ]EzI=R3 (2.1) 
and 

h + k + l = 0 .  (2.2) 

* Appendix III has been deposited with the British Library 
Lending Division as Supplementary Publication No. SUP 
31742 (93 pp., 2 microfiches). Copies may be obtained through 
The Executive Secretary, International Union of Crystallog- 
raphy, 13 White Friars, Chester CI-I 1 1 NZ, England. Appendix 
III is also available from the author as a technical report issued 
by the Medical Foundation of Buffalo. 
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Strictly speaking, in order to ensure that the domain 
of the primitive random variable be non-vacuous, it 
is necessary to interpret the exact equality ]EhI=R~ 
of (2.1), for example, as the inequalities R~< [Eh] < 
Rx+dR~, where dR~ is a small positive quantity, etc. 
Then the linear combination of phases 

~0 = fPh + ~0t, + ~01 (2.3) 

is a structure invariant which, as a function of the 
primitive random variables h,k,l, is itself a random 
variable. Denote by P(~IRa, Rz, R3) the conditional 
probability distribution of q~, given (2.1). The major 
result of this section is the formula 

where 

1 
P(~IRx, R2, R3) ~ K exp (A cos ~b) (2.4) 

2(7 3 
A = ~3Ti RtR2R3, (2.5) 

(7, is defined by (1.2), and the normalizing parameter 
K is given by 

K=2~Io(A) (2.6) 

where I0 is the modified Bessel function. In the special 
case that all atoms are identical, (2.4) was first obtained 
by Cochran (1955), using a different probabilistic 
background. Appendix I contains only the briefest 
sketch of the derivation of (2.4), and complete familiar- 
ity with earlier work is assumed (Hauptman, 1975a, b). 
However, see Appendix III for complete details, in 
particular equation (B.44). 

3. The conditional probability distribution of the 
structure invariant ¢p-- ¢Ph + q)k + qh + q)m, given the four 

magnitudes IE~l, lEkl, lE, l, leml 

Suppose that a crystal structure in P 1 is fixed and that 
the four non-negative numbers R1,R2, Ra, R4 are also 
specified. The fourfold Cartesian product W x W x 
Wx W is defined to be the collection of all ordered 
quadruples (b, k, 1, m) of reciprocal vectors b, k, 1, m. It 
is assumed finally that (h, k, 1, m) is the primitive random 
variable which is uniformly distributed over the subset 
of W x Wx W x W for which 

and 
IEhI=RI, [EkI=R2, lEd :R3 ,  IEmI=R4, (3.1) 

h + k + l + m = 0 .  (3.2) 

Again, the exact equality [EhI=R1 of (3.1) is to be 
interpreted as Rt < IEhl < Rt + dR1, etc. Then the struc- 
ture invariant 

q~ = q~h + q~k + qh + q~m (3.3) 

is a function of the random variables h,k, l ,m and is 
therefore itself a random variable. The conditional 
probability distribution of ~0, given (3.1), the chief 
result of this section, turns out to be [equation (C. 50) 
of Appendix III] 

where 

1 
P(~IRx'R2'R3'R4)~ L exp (B cos ~) (3.4) 

2(7 4 
B= (72 R1RzR3R4, (3.5) 

L= 2rdo(B) , (3.6) 

and (7, is defined by (1.2). 
The close parallel between §§2 and 3 has been 

emphasized and is such that not even a brief sketch 
of the derivation of (3.4) is necessary here (but Appendix 
III contains complete details). However there is a 
major difference between (2.4) and (3.4) which must 
also be stressed. In the case of X-ray diffraction the 
f~ are the atomic numbers Zj and are all positive. 
Hence the parameters A and B, (2.5) and (3.5) respec- 
tively, are also positive so that (2.4) and (3.4) have 
only a single maximum at q~=0 and the larger the 
values of A or B the smaller the standard deviation 
and the more reliable the estimate of the structure 
invariant ~0, zero in this case. In the presence of unequal 
atoms, in particular a small number of heavy atoms, 
the parameters A and B may increase greatly and the 
reliability of the estimate for ~0 correspondingly in- 
creased. If, on the other hand, negative scatterers are 
also present, as in the case of neutron diffraction, 
then the value of the parameter A will be reduced 
since A is proportional to (73 which is the sum of the 
cubes of the atomic scattering factors. In this case 
the reliability of the estimate for the three-phase 
invariant (2.3) is reduced accordingly. In the extreme 
case that an---0, a situation which appears never to 
occur in practice, ¢p, (2.3), is approximately uniformly 
distributed. The parameter B, on the other hand, is 
not reduced in the presence of negative scatterers since 
B varies directly with 0'4, the sum of the fourth powers 
of the atomic scattering factors. Hence the distribution 
(3.4) can only be favorably affected in the presence 
of unequal atoms, whether in the X-ray or neutron 
diffraction case. It should however be mentioned that 
(3.4) is in general not as useful as (2.4) since B values 
(of order 1/N) tend to be smaller than A values (of 
order 1/N1/2), at least for large values of N. Hence 
remarks like these are more meaningful for the distribu- 
tions associated with the second and higher neighbor- 
hoods of the three- and four-phase structure invariants 
~0 [(2.3) and (3.3), respectively]. The seven magnitude 
neighborhood of the four-phase structure invariant 
(3.3) is studied next with results not completely anti- 
cipated. 

4. The conditional probability distribution of the 
structure invariant ~=q)h'3l-q)k"~-q)l"~-q)m, given the seven 

magnitudes IEhl,lEkl,lEll,lEml,lEh+kl,lek+ll,lEl+hl 
Fix the seven non-negative numbers R1, R2, R3, R4,, R12, 
R23, R31 and make the same hypotheses as in §3. Suppose 
that the ordered quadruple (h,k,l,m) is the primitive 
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random variable which is now uniformly distributed 
over the subset of W x W x W x W defined by 

IEhI=R,, IEkl=Rz, lEvi =R3, IEmI=R4, (4.1) 

IEh+kl=R~2, IEk+~I=R23, IEl+hl=R3~, (4.2) 
and 

h + k + l + m = 0 .  (4.3) 

As before, the exact equality IEhl=Rx of (4.1) is to 
be understood as R~ < IE.I <R~+dRi, etc. Then the 
structure invariant 

~ = ~ h  "~ (/)k -t'- ~1-1"- ~ m  , (4.4) 

a function of the primitive random variables h,k,l ,m, 
is itself a random variable, and its conditional proba- 
bility distribution, given (4.1) and (4.2), the major 
result of this paper, turns out to be [equation (D.94) 
of Appendix III], 

P ( ~IRI, R2, R3, R4, R12, R23, R31) 

-"~ -l-exp (-2B'  c°s ~)I° ( ~  R'2Y12 ) M 

\ O'~'-/20"3 Y 2 3 ) '  Gz---~ [20"3R31Y31) /o (4.5) 

where 

B'= 1 (30"~_0"20"4)R1RzR3R 4 (4.6) 
0"2 

2 2 2 2 , (4.7.) ]I12 = [RIR2 + RaR4 + 2R1R2RaR4 cos t~] 1/2 
2 2 2 2 , ( 4 . 8 )  ]I23 = [RzR3 + R1R4 + 2RIR2R3R4 cos ~]1/2 
2 2 2 2 , (4 .9 )  YaI = [RaR1 + R2R4 + 2RiR2R3R4 cos ~]1/2 

o o  

M= 2re ~, ( -  1)"+v+°~,voI,+v+o(2B' ) , (4.10) 
I ~ , V , O  

where 2~,v 0 is defined by 

~.,vo=I, ~,~2/2/ 20.3 RI2RiR2) I, \~2/2/ 20"a R12R3R4) 

x Iv \a--~ Iv \~2a-p: 

20"3 [ 20"3 ) 
X I o (-2~ RalRaR1) Io \~2/2 e31R2R4 ' (4.11) 

\ t~ 2 l 

and I is the modified Bessel function. Appendix II 
contains only the briefest sketch of the derivation of 
(4.5) with heavy dependence on recent work (Haupt- 
man, 1975a, b), but Appendix III contains a detailed 
analysis. As pointed out in the earlier work (Haupt- 
man, 1975b), it is not necessary in the applications 
to calculate M from the triple sum (4.10), a lengthy 
computation. It is much faster to calculate the nor- 
malizing parameter M, if desired, numerically from 
the distribution (4.5) directly, and the most probable 
value of 1~01, which may lie anywhere between 0 and 
re, may also be found directly from (4.5). 

In the special case that all atoms are identical, it 
is readily verified that the present distribution (4.5) 

reduces to the one derived earlier [(3.2) of Hauptman 
(1975b)]. In the case of unequal atoms however, par- 
ticularly when one or more heavy atoms are present, 
the parameters B' and 0.310.23 I2 may be significantly 
greater than their earlier counterparts, 2/NR1R2RaR4 
and llN 1/2, respectively, in the X-ray diffraction case. 
The resulting sharpening of the distribution (4.5) 
yields a more reliable estimate for the value of the 
quartet q~. 

In the neutron diffraction case, however, the values 
of B' and 0"3/0"2 3/2 tend to be reduced, resulting in a 
flattening of the distribution (4.5) and a correspond- 
ingly less reliable estimate for the value of q,. It is 
of interest to observe in fact that in the extreme case 
that 0"3---0, then B'~_B/2, and (4.5) reduces to (3.4) 
so that only the zero estimate for ~0 is possible and 
nothing is gained in going from the first to the second 
neighborhood. Since this is precisely the case that 
(2.4) yields no information, one may speculate that 
more reliable estimates for the cosine invariants, in 
particular those whose values are probably negative, 
are to be obtained in this case by going to the higher 
neighborhoods of the three- and four-phase invariants 
or through an investigation of the five- or even six- 
phase structure invariants. It should be stressed how- 
ever that in the actual applications to real structures 
this extreme appears never to be realized so that (4.5) 
and its generalizations will almost certainly prove to 
be useful in the applications. 

It should be pointed out finally that in the special 
case that 

R12 ~ R23 '~ R31 -~ 0 (4.12) 

then (4.5) reduces to 

P(~[Ra, g2, R3, R4; R12 --- R23 - R31 "~ 0) 

1 
_~ exp ( -  2B' cos q,) 

where 
M= 27~Io(2B'), 

(4.13) 

(4.14) 

so that, as already pointed out earlier in the equal 
atom case (Hauptman, 1974, 1975b), in this special 
case the most probable value of (; is 7r, and the larger 
the value of B' the more likely it is that (; is close to 7r. 

5.  S p a c e  g r o u p  P 1  

In view of recently derived results in PT (Green & 
Hauptman, 1976; Hauptman & Green, 1976) and the 
work described in §§1-4, the analogues of (2.4), (3.4), 
and (4.5) in the space group P1, obtained by analogy, 
are briefly described here. 

5.1. The conditional probability distribution of the 
structure invariant q, = q~h + q~k + qh, given the 
three magnitudes IE.I, lEd, Igll 

Make the same assumptions and use the same 
notation as in §2. Note however that, since the space 

A C 32A - 9 
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group now is PT, the structure invariant 

= ~0 h + ~0 k "]- ~01 (5.1) 

takes on only the two values of 0 and n. Hence its 
probability distribution is discrete. Denote by P ~ - -  
P~(Rx,R2,R3) the conditional probability that (o=0 or 
n (or that cos ~0= + 1) respectively, given the three 
magnitudes (2.1). Then 

where 

1 ( A )  
P ~ _ ~ - e x p  _+ ~- , (5.2) 

A 
K=2 cosh ~ - ,  (5.3) 

which should be compared with (2.4) and (2.6). Again 
A and o-, are defined by (2.5) and (1.2) respectively, 
and N is the number of atoms in the whole unit cell. 
In the special case of equal atoms (5.2) was first 
obtained by Woolfson (1954) who used a different 
probabilistic background. 

5.2. The conditional probability distribution of  the 
structure invariant ~o = ~oh + q~k + ~0~ + ~Om, given the 
four magnitudes IEhl, IEkl, IE, I, IEml 

Use the notation and hypotheses of §3 but note 
that the structure invariant 

(t9 = ~0 h Jl- q)k "JI- ~1 -Ji- ~0 m (5.4) 

now takes on only the two values 0,n. Denote by 
P~ = P4~(R~, R2, Ra, R4) the conditional probability that 
(0=0 or n (or that cos ~0= + 1) respectively, given the 
four magnitudes (3.1). Then 

where 

1 ( B  
P~- -_zexp  + ~ ) ,  (5.5) 

B 
L = 2 cosh ~ ,  (5.6) 

which should be compared with (3.4) and (3.6). Again 
B is defined by (3.5), a, by (1.2), and N is the number 
of atoms in the whole unit cell. If all atoms are identical 
(5.5) reduces to (4.1) of Hauptman & Green (1976). 

5.3. The conditional probability distribution of  the 
structure invariant ~o = (Oh + ~Ok + ~O1 + q~m, given the 
seven magnitudes 
Ighl, IEkl, lEd, Igml, Igh + kl, IEk + II, IEl+ hi 

Refer to §4 for notation and hypotheses and denote 
by P~  = P~(R1, R2, Ra, R4, R~2, R23, R31) the conditional 
probability that the four-phase structure invariant 
(5.4) be 0 or n (or that cos ~0 = + 1) respectively, given 
the seven magnitudes (4.1) and (4.2). Then 

1 ( °-3 RI2Y~) P~ -~ ~ exp (T B') cosh a~/2 

where 
Y ~  = RIR2 +_ R3R4, (5.8) 

Y ~  = R2R3 + RaR4 , (5.9) 

Y ~  = R3R1 +_. R2R4, (5.10) 

M = e x p ( - B ' ) c o s h ( - a a ~ z R 1 2 Y ~ ) c o s h ( j ~ R 2 a Y ~ )  

cos  

+ e x p ( + B ' ) c o s h ( ~ : ~ R 1 2 Y ~ )  

x cosh a_@~R2aY ~ cosh , (5.11) 

and B' and a,, are defined by (4.6) and (1.2) respectively. 
Equations (5.7)-(5.11) should be compared with their 
analogues in P1, equations (4.5)-(4.11). If all atoms 
are identical (5.7) reduces to (3.13) of Hauptman & 
Green (1976). 

5.4. The special case that RI2 '~' R23 ___ R31 ___ 0 
If 

R12 "~ R23 _~ R31 ~_ 0 ,  (5.12) 

(5.7) and (5.11) reduce to 

1 
P ?  _ ~ e x p  (~  B') ,  (5.13) 

M =  2 cosh B ' ,  (5.14) 

so that, as observed previously in the equal atom case 
(Hauptman, 1974; Hauptman & Green, 1976), in this 
special case ~0 is probably equal to n and the larger 
the value of B' the more likely it is that ~0 = n. 

6. Concluding remarks 

The recently secured probabilistic theory of the struc- 
ture invariants and seminvariants has been generalized 
here to include the case that not all atoms in the 
unit cell are identical. It has been shown how the 
presence of unequal atoms, in particular a few heavy 
atoms, increases the power of the direct method, a 
fact long known but now quantitatively expressed, at 
least in the cases treated in this paper. Since the 
generalization described here permits the presence of 
negative scatterers, the application to neutron diffrac- 
tion is also immediate. On the basis of the analysis 
presented in this work it seems almost certain that the 
extension to unequal atoms, described here only for 
the three- and four-phase structure invariants, will 
carry over without essential change to higher neigh- 
borhoods and to the structure invariants and semin- 
variants in general. 
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APPENDIX I 
Derivation of (2.4) 

In order to derive the conditional probability distribu- 
tion (2.4) it is necessary first to obtain the joint 
probability distribution P3 = P(R1, R2, R3; (01, (02, (03) o f  
the magnitudes [Ehl, lEkl, lEl] and phases tPh, rPk,~P~ of 
the three structure factors Eh, Ek, E~ on the basis that 
the ordered triple (h,k,l) is the primitive random 
variable uniformly distributed over the subset of 
W× Wx W defined by (2.2): 

P3- (2~)6 

x exp { - i[R~01 cos(01 - (00 

+ R2~02COS (02--(02)+ R3e 3 COS (03-- (03)]) 
N 

× H g.ldoldQ2do3dOldO2d03 (I.1) 
j = l  

where 

I t'~ (2nh rj 01) gj = exp [al/2 [01 cos . -- 

+ 02 cos(2nk, r j -  02) 

+03 cos (2.(h+k).  r +0 )l/3 (I.2) 
J /  h ,k"  

Following the recent method (Hauptman, 1975a) one 
finds 

gJ= ~ (- i )uJu k~2/2 ] J~' \~2/2] Ju t,<rl/2i 
l u=  - - oo  

x exp [ilz(01 + 02 + 03)] (I.3) 

so that the dependence of gj on .fj is clear. It then 
follows that 

H gj = exp log gj 
j= l  j= 

= exp [ --4(ell 2 ~_ 022 + 03 z) _ -4a2--~icr3 010203 

X COS (01+02+03)  ] [ l + O  ( 1 ) ]  (1.4) 

where O(1/N) represents terms of order 1/N or higher 
in which the terms of order 1IN are independent of 

the O's. Substituting from (I.4) into (I.1) and carrying 
out the indicated sixfold integration in accordance with 
recently described techniques (Hauptman, 1975a) one 
finally obtains the desired joint probability distribu- 
tion of three structure factors Eh,Ek, E~: 

RiR2R 3 [ 2a3 
t'3-- ~3 exp <-RI-R~-R~+ ~ RIR2R3 

x cos (~1+(02+(03)] [ 1 + O  ( 1 ) ]  (I.5) 

where O(1/N) represents terms of order 1/N or higher 
in which the terms of order 1IN are independent of the 
(o's. Hence, by fixing R1,Rz, R3 and multiplying by a 
suitable normalizing parameter (Hauptman, 1975b), 
(I.5) implies (2.4) correct up to and including terms of 
order 1/N. 

APPENDIX H 
Derivation of (4.5) 

In order to derive the conditional probability distribu- 
tion (4.5) it is necessary first to obtain the joint 
probability distribution P7 = P(Rx, R2, R3, R4, R12, R23, 
R31; (0x, (02, (03, (04, (012, (023, (030 of the seven structure 
factors Eh, Ek, El, Em, Eh+k, Ek+~, El+h on the basis that 
the ordered quadruple (h,k,l,m) is the primitive ran- 
dom variable uniformly distributed over the subset of 
Wx Wx Wx W defined by (4.3): 

P7 = RI R2R3R4RI2R23R31(27014 f01,02,q3,~4,012,023,031 

2re 

x 101,02,03.04,012,023,031 ~1~2~304~12~23~31 

× exp { -  i[R101 cos (0i-(0x)+R202 cos (02--(02) 
+ R3Q 3 cos (03 -- (03) + R404 cos (04 - (04) 

-a t- R12Q12 COS (012 -- (012) -[- R23023 cos (023 - (023) 

-JI- R31031 cos (031--(031)]) 
N 

x II g.idoldQzdo3d04dOlzdO23d031 
j = l  

x dOzdO2dO3dOgd012dO23d03i (II.1) 

where 

gj = exp [~2~- ~ [01 cos (2~h. r j - 01 )  

+ 02 cos (2~k. r j - 0 2 ) +  03 cos (2~1. r 1 -  03) 

+ 04 cos (2~(h + k + 1). rj + 04) 

+ 012 cos (2~(h + k ) .  r ~ -  0~2) 

+ 023 cos (2~(k + 1). r j -  023) 

+031 cos (2n( l+h) .  r j -  0a,)]~ ~) (II.2) 
J /  h,k, l  

Following the recent method (Appendix II, Hauptman, 
1975a) one now finds 

A C 32A - 9* 
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g d ~ 

× Ju+o { f jo3] Ju+,, [ fie4 ~ Sv i fj~)12 '~ 

[ fie23 ] [ f,03 L] 
x J,  k a~ ~2 ] .1o \ af2 ] 

x exp [02(0, +02+03 +04)+iv(Oi +02-012) 

+ io'(O 1 + 04 + 023) + ie(O 1 + 03 -- 031)]. 

It follows that 

) H g j=exp  ( ~ log gj 
j = l  x j = t  

{ ¼(e~+ 2 ,_ - -  e 2  + ~03 + ~)42 + ~022 + ~0223 + e21) ~ e x p  

iGa 
4 ~  2 [ei~04~)23 COS (01 + 04 + 023 ) 

+ e~Q3e3~ cos (0~ + 0 3 -  030 

+ ~0102~)12 COS (01 + 02 -- 012 ) 

+ 0203e23 COS (0 2 + 0 3 -- 023 ) 

+ 02~04031 COS (0 2 + 0 4 + 031 ) 

+ e3e4012 COS (03 + 04 + 012)] 

O" 4 + ~ [0~o2o~o, cos  (0~ + 02 + 0~ + 0,) 

IfJe A (-i)'+°+*Ju+,+o+,, \ cr~/2 ] ~ a 3n ,! 
12,V,O,~ 

+ ~02~03Q31~O12 COS 

+ 02~O4012023 COS 

+ ~03~04~023Q31 COS 

+ ~01~4~31~12 COS 

+ Q1~03~O12~23 COS 

(02-03 +031-0x2) 
(02 -- 04 -- 012 -- 023 ) 

(03 -- 04 -- 023 -- 031 ) 

((01 -- 04--  031 -- 012 ) 

(01 - 03 - 012 + 023) 

(01 - 02 + 023 - 033]~ 
J 

+ 01~2~)2SQ31 COS 

(11.3) 

(11.4) 

where O(1/N) represents terms of order 1/N or higher 
in which the terms of order 1IN are independent of the 
O's. Substituting from (11.4) into (II.1) and carrying 
out the indicated fourteenfold integration in accordance 
with recently secured techniques (Hauptman, 1975a, 
Appendix IV) one obtains the desired joint probability 

distribution of the seven structure factors Eu, Ek, EI, 
Em, E,,+k, Ek+l, E1+h: 

R1R2R3R4R12R2aR31 
p 7  ~ _ . . . . . . . . . . . .  7~ 

× e x p {  R2-  R 2-  2 2 o2 02 02 -- R 3 -- R 4 - .,t,12 - J~23-  at,t31 

+ 

+ RaR4R12 COS (~J3 + ~)4 + I~J12) 

+ RzRaR23 COS (b  E + ¢3 -- ~)23) 

+ R1R4R23 COS (¢1 + ¢4 + (PEa) 

+ RIR3Ral cos (¢t  + ¢3 - bat) 

+ R2R4R31 COS ((/)2 + ~)4 + ¢31)] 

[ 2-a2 [R, RaR12RE3 cos ( ¢ x -  ¢ 3 -  qh2 -at 
+ ¢23) + R2R4R12R23 cos (¢2 - ¢ 4 -  ¢12 - ¢z3) 

+ R2RaR31R12 cos (¢2 - ¢3 - ~12 + ¢31) 

+ R1R4RalR12 cos (¢1 - ¢4 -- ¢31 -- ~)12) 

+ R1R2R23R31 cos (¢1 - ¢2 + ¢23 -- ¢31) 

+ RaR4RE3R31 COS (¢3 - -  ¢4  - -  ¢23 - -  ¢31)] 

-2  (3cr~ aa ~ )  R1R2R3R4 

X COS (¢1  + ¢ 2 + ¢ 3 +  ¢4)}  {1 +O (1)}, (I1.5) 

where O(1/N) represents terms of order 1IN or higher 
in which the terms of order 1/N are independent of the 
¢'s.  Hence, by fixing R1, R2, R3, R4, R12,R23, R31, inte- 
grating (11.5) with respect to ¢12, ¢23, ¢31 and multiply- 
ing by a suitable normalizing parameter (Hauptman, 
1975b) (11.5) implies (4.5), correct up to and including 
terms of order 1IN. 
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